Lycée 09/04/1938 de Sidi Bouzid Le :05/03/2004

Devoir de Synthèse N°2

Classes 3^{ème} Technique & Sciences expérimentales Durée 2H

Exercice N°1

Soit f la fonction définie sur IR par: $f(x)=-x^3+3x+1$. On désigne par Cf sa courbe représentative dans un repère orthonormé (0, i, j)

- 1. Calculer $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter graphiquement les résultats
- 2. Etudier les variations de f
- 3. a. Monter que le point I de ${\mathbb C} f$ d'abscisse 0 est un point d'inflexion pour ${\mathbb C} f$
 - b. Montrer que I est un centre de symétrie pour $\mathbb{C}f$
- 4. a. Ecrire une équation cartésienne de la tangente T à $\mathbb{C}f$ au point \mathbb{I}
 - b. Etudier suivant les valeurs de x les positions relative de Cf et T
- 5. Représenter Cf et T
- 6. Considérons la fonction g définie sur IR par: $g(x) = -|x|^3 + 3|x| + 1$
 - a. Etudier la dérivabilité de g en 0
 - b. Vérifier que g est paire
 - c. Déduire alors la courbe Cg à laide de Cf en précisant les deux demi tangentes en O

Exercice N° 2

Une urne contient quatre boules blanches numérotées 0, 0, 1, 1 et deux boules noires numérotées 0, 2.

- 1. On tire simultanément deux boules de l'urne
 - a. Donner le nombre N de tous les tirages possibles
 - b. Donner le nombre N₁ des triages d'avoir deux boules de même couleur
 - c. Déduire le nombre N₂ des triages d'avoir deux boules de couleur différent
 - d. Donner le nombre N_3 des tirages d'avoir deux boules qui portent des numéros pairs
- 2. On tire successivement sans remise trios boules de l'urne
 - a. Donner le nombre N' de tous les tirages possibles
 - b. Donner le nombre N'1 des triages comportant deux couleurs
 - c. Donner le nombre N'₃ des tirages d'avoir aux moins une boules qui porte un numéro pair

Exercice N° 3:

Le plan est muni d'un repère orthonormé (o, i, j). On considère les points A(1, 2), B(3, -2) et C(0, 1)

- 1. a. Vérifier que CA et CB sont orthogonaux
 - b. Déduire que C appartient au cercle C de diamètre [AB]
- 2. prouver que \mathbb{C} à pour équation cartésienne: $x^2+y^2-4x-1=0$
- 3. Préciser le centre et le rayon de C
- 4. Montrer que la tangente D à C au point C à pour équation cartésienne:2x-y+1=0
- 5. Soit H(a, b) un point de D
 - a. Montrer que BH= $\sqrt{5a^2+6a+18}$
 - b. Etudier les variations de la fonction définie sur IR par: $f(a)=5a^2+6a+18$

c. Déduire la distance d(B,D) et les coordonnées de B' projeté orthogonale de B sur D